PROPERTIES OF COMBINATORIAL OPTIMIZATION UNCONDITIONAL PROBLEMS ON ARRANGEMENTS WITH LINEAR AND LINEAR-FRACTIONAL OBJECTIVE FUNCTIONS

Iemets Oleg A., Poltava University of Economics and Trade

Barbolina Tatyana N., Poltava National V.G. Korolenko Pedagogical University, Poltava

pages 66-76

DOI: 10.1615/JAutomatInfScien.v49.i1.40

The properties of unconditional combinatorial optimization problems on a set of arrangements with linear and linear-fractional objective functions are considered. We prove that in linear problem any extremal is an element of certain set of polyarrangements. Also we substantiate how to construct the set of extremals in a problem with linear-fractional objective function when one of extremals is known.

  1. Sergienko I.V., Kaspshitskaya M.F., Models and solving methods of combinatorial problems of optimization on computer [in Russian], Naukova dumka, Kiev, 1981.
  2. Zgurovskiy M.Z., Pavlov A.A., Decision making in network systems with limited resources [in Russian], Naukova dumka, Kiev, 2010.
  3. Panishev A.V., Plechistyi D.D., Models and optimization methods in traveling salesman problem [in Russian], ZhGTU, Zhitomir, 2006.
  4. Hulyanytskyi L.F., Sirenko S.I., ACO-H metaheuristic combinatorial optimization method, Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal “Problemy upravleniya i informatiki”, 2010, No. 4.  31–42.
  5. Stoyan Yu.G., Yakovlev S.V., Mathematical models and optimization methods of geometrical designing [in Russian], Naukova dumka, Kiev, 1986.
  6. Stoyan Yu.G., Iemets O.A., Theory and methods of Euclidean combinatorial optimization, http:// dspace.puet.edu.ua/handle/123456789/487.
  7. Iemets O.A., Barbolina T.N., Combinatorial optimization on arrangements, http://dspace.puet.edu.ua/ handle/123456789/473.
  8. Iemets O.A., Chernenko O.A., Optimization of linear fractional functions on arrangements, http:// dspace.puet.edu.ua/handle/l23456789/467.
  9. Stoyan Yu.G., Iemets O.A., Iemets E.M., Optimization on polyarrangements: theory and methods, http://dspace.puet.edu.ua/handle/123456789/376.
  10. Grebennik I.V., Baranov A.V., Estimates of minimum of convex functions on classes of combinatorial sets of permutations, Radioelektronika. Informatika. Upravlenie, 2009, No. 1, 81–87.
  11. Donets G.P., Kolechkina L.M., Extremal problems on combinatorial configurations, http://dspace. puet.edu.ua/handle/123456789/560.
  12. Emets O.A., Ustian N.Yu., Studies of problems of combinatorial optimization of game type on arrangements, Problemy upravliniya i informatiki, 2007, No. 1, 26–36.
  13. Iemets O.A., Roskladka O.V., Nedobachiy S.S., Irreducible constraint system for general polyhedron of arrangements, Ukrainskiy matematicheskiy zhurnal, 2003, 55, No. 1, 3–11.
  14. Iemets O.A., Barbolina T.N., On properties of linear unconstrained problem of combinatorial optimization on arrangements with probabilistic uncertainty, Kibernetika i sistemnyi analiz, 2016, No. 2, 127–139.
  15. Iemets O.A., Parfyonova T.O., Discrete mathematics, http://dspace.puet.edu.ua/handle/123456789/552.