• Home
  • Journal
  • Journals 2016
  • Journal №1
  • HIGH VELOCITY IDENTIFICATION METHODS OF THE MODEL PARAMETERS OF FILTRATION–CONSOLIDATION OF COMPRESSIBLE MEDIA OF MOISTURE-SATURATED MICRO-POROUS PARTICLES

HIGH VELOCITY IDENTIFICATION METHODS OF THE MODEL PARAMETERS OF FILTRATION–CONSOLIDATION OF COMPRESSIBLE MEDIA OF MOISTURE-SATURATED MICRO-POROUS PARTICLES

Petryk Mykhailo R., Doctor of Physical and Mathematical Sciences, Professor, Head Department, Ivan Pulyuy Ternopil National Technical University

pages 18-31

DOI: 10.1615/JAutomatInfScien.v48.i1.80

The identification problems of the model parameters of filtration-consolidation in compressible media of micro–porous particles using residual functionals, taking into account the total liquid flow changes on the observation surface are formulated. Highly productive methods of identification problems implementation based on the analytical solutions of the direct and conjugate problems are proposed. Explicit analytical expressions of components of residual functional gradients for the model parameters identification by gradient methods are obtained.

  1. Zhuw H.X., Melrose J.R., A mechanics model for the compression of plant and vegetative tissues, Journal of Theoretical Biology, 2003, No. 221, 89–101.
  2. Schwartzberg H.G., Expression of fluid from biological solids, Separation and Purification Methods, 1997, No. 26 (1), 1–213.
  3. Barenblatt G.I., Entov V.M., Ryzhik V., Theory of fluid flows through natural rocks, Kluwer, Dordrecht, 1990.
  4. Grimi N., Vorobiev E., Lebovka N., Vaxelaire J., Solid-liquid expression from denaturated plant tissue: Filtration-consolidation behavior, Journal of Food Engineering, 2010, No. 96 (1), 29–36.
  5. Terzaghi K., Erdbaumechanik auf Bodenphysikalischer Grundlage, Wien, Deuticke, 1925.
  6. Suclje L., Rheological aspects of soil mechanics, Wiley Interscience, New York, 1970.
  7. Shirato M., Murase T., Iwata M., Nakatsuka S., The Terzaghi–Voigt combined models for constant pressure consolidation of filter cakes and homogeneous semi-solid materials, Chemical Engineering Science, 1986, No. 41, 3213–3218.
  8. Lanoisell J.-L., Vorobyov E., Bouvier J.-M., Piar G., Modeling of solid/liquid expression for cellular materials, AIChE Journal, 1996, No. 42(7), 2057–2067.
  9. Petryk M., Vorobiev E., Numerical and analytical modeling of solid-liquid expression from soft plant materials, Ibid, 2013, No. 59 (12), 4762–4771.
  10. Petryk M., Vorobiev E., Liquid flowing from porous particles during the pressing of biological materials, Computer & Chem. Eng., 2007, No. 31 (10), 1336–1345.
  11. Sergienko I.V., Deineka V.S., Identification of parameters of some problems on filtration-consolidation of moisture-saturated micro-porous media, Kibernetika i sistemnyi analiz, 2015, No. 2, 89–107.
  12. Petryk M.P., Mikhalik D.M., Nonlinear mathematical model of two-level transfer of “filtration-consolidation” type, Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal “Problemy upravleniya i informatiki”, 2010, No. 2, 74–85.
  13. Sergienko I.V., Deineka V., Systems analysis [in Russian], Naukova dumka, Kiev, 2013.
  14. Sergienko I.V., Petryk M.P., Fressar Zh., Leklerk S., Highly productive identification methods of competitive diffusion in inhomogeneous media of nanoporous particles, Kibernetika i sistemnyi analiz, 2015, No. 4, 44–61.
  15. Lenyuk M.P., Fourier, Bessel integral transforms with spectral parameter in problems of mathematical modeling of mass transfer in inhomogeneous media [in Russian], Naukova dumka, Kiev, 2000.
  16. Alifanov O.M., Inverse problems of heat exchange [in Russian], Mashinostroyenie, Moscow, 1988.
  17. Sergienko I.V., Petryk M.P., Himich O.M., Kane D., Mikhalik D.M., S. Fresar Leklerk, Mathematical modeling of mass transfer in media of nanoporous particles [in Russian], Institut kibernetiki im. V.M. Glushkova NAN Ukrainy, Kiev, 2014.
  18. Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integrals and series [in Russian], Nauka, Moscow, 1981.